Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Highly sensitive force sensors of piezoelectric zinc oxide (ZnO) dual‐gate thin film transistors (TFTs) are reported together with an analytical model that elucidates the physical origins of their response. The dual‐gate TFTs are fabricated on a polyimide substrate and exhibited a field effect mobility of ≈5 cm2V−1s−1,Imax/Iminratio of 107, and a subthreshold slope of 700 mV dec−1, and demonstrated static and transient current changes under external forces with varying amplitude and polarity in different gate bias regimes. To understand the current modulation of the dual‐gate TFT with independently biased top and bottom gates, an analytical model is developed. The model includes accumulation channels at both surfaces and a bulk channel within the film and accounts for the force‐induced piezoelectric charge density. The microscopic piezoelectric response that modulates the energy‐band edges and correspondent current–voltage characteristics are accurately portrayed by this model. Finally, the field‐tunable force response in single TFT is demonstrated as a function of independent bias for the top and bottom gates with a force response range from −0.29 to 22.7 nA mN−1. This work utilizes intuitive analytical models to shed light on the correlation between the material properties with the force response in piezoelectric TFTs.more » « less
- 
            Abstract Durable and conductive interfaces that enable chronic and high‐resolution recording of neural activity are essential for understanding and treating neurodegenerative disorders. These chronic implants require long‐term stability and small contact areas. Consequently, they are often coated with a blend of conductive polymers and are crosslinked to enhance durability despite the potentially deleterious effect of crosslinking on the mechanical and electrical properties. Here the grafting of the poly(3,4 ethylenedioxythiophene) scaffold, poly(styrenesulfonate)‐b‐poly(poly(ethylene glycol) methyl ether methacrylate block copolymer brush to gold, in a controlled and tunable manner, by surface‐initiated atom‐transfer radical polymerization (SI‐ATRP) is described. This “block‐brush” provides high volumetric capacitance (120 F cm─3), strong adhesion to the metal (4 h ultrasonication), improved surface hydrophilicity, and stability against 10 000 charge–discharge voltage sweeps on a multiarray neural electrode. In addition, the block‐brush film showed 33% improved stability against current pulsing. This approach can open numerous avenues for exploring specialized polymer brushes for bioelectronics research and application.more » « less
- 
            Abstract The Utah array powers cutting‐edge projects for restoration of neurological function, such as BrainGate, but the underlying electrode technology has itself advanced little in the last three decades. Here, advanced dual‐side lithographic microfabrication processes is exploited to demonstrate a 1024‐channel penetrating silicon microneedle array (SiMNA) that is scalable in its recording capabilities and cortical coverage and is suitable for clinical translation. The SiMNA is the first penetrating microneedle array with a flexible backing that affords compliancy to brain movements. In addition, the SiMNA is optically transparent permitting simultaneous optical and electrophysiological interrogation of neuronal activity. The SiMNA is used to demonstrate reliable recordings of spontaneous and evoked field potentials and of single unit activity in chronically implanted mice for up to 196 days in response to optogenetic and to whisker air‐puff stimuli. Significantly, the 1024‐channel SiMNA establishes detailed spatiotemporal mapping of broadband brain activity in rats. This novel scalable and biocompatible SiMNA with its multimodal capability and sensitivity to broadband brain activity will accelerate the progress in fundamental neurophysiological investigations and establishes a new milestone for penetrating and large area coverage microelectrode arrays for brain–machine interfaces.more » « less
- 
            Abstract Poly(3,4‐ethylenenedioxythiophene) or PEDOT is a promising candidate for next‐generation neuronal electrode materials but its weak adhesion to underlying metallic conductors impedes its potential. An effective method of mechanically anchoring the PEDOT within an Au nanorod (Au‐nr) structure is reported and it is demonstrated that it provides enhanced adhesion and overall PEDOT layer stability. Cyclic voltammetry (CV) stress is used to investigate adhesion and stability of spin‐cast and electrodeposited PEDOT. The Au‐nr adhesion layer permits 10 000 CV cycles of coated PEDOT film in phosphate buffered saline solution without delamination nor significant change of the electrochemical impedance, whereas PEDOT coating film on planar Au electrodes delaminates at or below 1000 cycles. Under CV stress, spin‐cast PEDOT on planar Au delaminates, whereas electroplated PEDOT on planar Au encounters surface leaching/decomposition. After 5 weeks of accelerated aging tests at 60 °C, the electrodeposited PEDOT/Au‐nr microelectrodes demonstrate a 92% channel survival compared to only 25% survival for spin‐cast PEDOT on planar films. Furthermore, after a 10 week chronic implantation onto mouse barrel cortex, PEDOT/Au‐nr microelectrodes do not exhibit delamination nor morphological changes, whereas the conventional PEDOT microelectrodes either partially or fully delaminate. Immunohistochemical evaluation demonstrates no or minimal response to the PEDOT implant.more » « less
- 
            Abstract Intracellular access with high spatiotemporal resolution can enhance the understanding of how neurons or cardiomyocytes regulate and orchestrate network activity and how this activity can be affected with pharmacology or other interventional modalities. Nanoscale devices often employ electroporation to transiently permeate the cell membrane and record intracellular potentials, which tend to decrease rapidly with time. Here, one reports innovative scalable, vertical, ultrasharp nanowire arrays that are individually addressable to enable long‐term, native recordings of intracellular potentials. One reports electrophysiological recordings that are indicative of intracellular access from 3D tissue‐like networks of neurons and cardiomyocytes across recording days and that do not decrease to extracellular amplitudes for the duration of the recording of several minutes. The findings are validated with cross‐sectional microscopy, pharmacology, and electrical interventions. The experiments and simulations demonstrate that the individual electrical addressability of nanowires is necessary for high‐fidelity intracellular electrophysiological recordings. This study advances the understanding of and control over high‐quality multichannel intracellular recordings and paves the way toward predictive, high‐throughput, and low‐cost electrophysiological drug screening platforms.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
